
Fast basecases for arbitrary-size multiplication

Albin Ahlbäck1 Fredrik Johansson2

1LIX, CNRS, École polytechnique

2Inria Bordeaux

31 January 2025



Outline

1 Basic multiple-precision arithmetic operations

2 Hardware overview and implementation

3 Results



Basic multiple-precision arithmetic operations

Let integers be on the form a =
n−1∑
i=0

aiβ
i where 0≤ ai <β.

Fundamentals are these naïve/schoolbook O(n) operations:

Left and right shift: r ←⌊a ·2e⌋
Addition and subtraction: r ← a±b
n×1-multiplication: r ← a ·b0 (mul_1)
Addition of n×1-multiplication: r ← r +a ·b0 (addmul_1)



Basecase multiplication

Full multiplication

r ← a ·b =
n−1∑
i=0

a ·biβ
i

can be carried out via

r ← a ·b0 // mul_1
for i ← 1 to n−1 do

r ← r + (a ·bi) ·βi // addmul_1
end

where multiplication with βi is trivial.



Visualizing 6×6 multiplication

b0
b1
b2
b3
b4
b5

a0 a1 a2 a3 a4 a5

r ← a ·b0
for i ← 1 to n−1 do

r ← r + (a ·bi) ·βi

end



Visualizing 6×6 multiplication

b0
b1
b2
b3
b4
b5

a0 a1 a2 a3 a4 a5

r ← a ·b0
for i ← 1 to n−1 do

r ← r + (a ·bi) ·βi (i = 1)
end



Visualizing 6×6 multiplication

b0
b1
b2
b3
b4
b5

a0 a1 a2 a3 a4 a5

r ← a ·b0
for i ← 1 to n−1 do

r ← r + (a ·bi) ·βi (i = 2)
end



Visualizing 6×6 multiplication

b0
b1
b2
b3
b4
b5

a0 a1 a2 a3 a4 a5

r ← a ·b0
for i ← 1 to n−1 do

r ← r + (a ·bi) ·βi (i = 3)
end



Visualizing 6×6 multiplication

b0
b1
b2
b3
b4
b5

a0 a1 a2 a3 a4 a5

r ← a ·b0
for i ← 1 to n−1 do

r ← r + (a ·bi) ·βi (i = 4)
end



Visualizing 6×6 multiplication

b0
b1
b2
b3
b4
b5

a0 a1 a2 a3 a4 a5

r ← a ·b0
for i ← 1 to n−1 do

r ← r + (a ·bi) ·βi (i = 5)
end



High multiplication

High multiplication is a multiplication where we scrap the lower
part of the result, e.g. floating point arithmetic.

Typically, we want to compute the highest n words of an n×n
product, where the full product would be contained in 2n words.

Magnitude

Naïve Sloppy approximate Precise approximate

– high multiplication between two words u and v : ⌊uv/β⌋



High multiplication

Sloppy approximate yields an error of at most (n−1)βn

Precise approximate yields an error of at most (2n−3)βn−1

Precise approximate contains only n−1 extra word-by-word high
multiplications compared to sloppy approximate, but has far better
precision!

With precise approximate we can check if the upper n words are
guaranteed to be correctly rounded.



Instructions for mul_1

a0 a1 a2 a3 a4 a5 × b0

= Low multiplications

+ High multiplications

= r0 r1 r2 r3 r4 r5 r6

We need low multiplication, high multiplication and addition with
carry.



Instructions for addmul_1

r0 r1 r2 r3 r4 r5 r6

+ a0 a1 a2 a3 a4 a5 × b0

= r0 r1 r2 r3 r4 r5 r6

+ Low multiplications

+ High multiplications

We need low multiplication, high multiplication and addition with
carry (preferably with two separate carry flags).

Two separate carry flags ⇒ lower bound of 1 cycle/n?

One carry flag ⇒ lower bound of 2 cycles/n?



Instructions for addmul_1

r0 r1 r2 r3 r4 r5 r6

+ a0 a1 a2 a3 a4 a5 × b0

= r0 r1 r2 r3 r4 r5 r6

+ Low multiplications

+ High multiplications

We need low multiplication, high multiplication and addition with
carry (preferably with two separate carry flags).

Two separate carry flags ⇒ lower bound of 1 cycle/n?

One carry flag ⇒ lower bound of 2 cycles/n?



Architecture specifics

x86

Two separate carry flags
Has word-word full multiplication in one instruction

ARM

One single carry flag
Low multiplication and high multiplication are different
instructions

⇒ ARM can only do one out of two carry chains in addmul_1 at a
time, while x86 do both at a time?



Simplified overview of CPU architecture

The main stages of a modern CPU:

1 Decoder
2 Branch prediction
3 Scheduler
4 Multiple units executing instructions

This enables:

Scheduling instructions before branch is evaluated
Out-of-order execution
Concurrent execution of multiple instructions

Things to be aware of:

Dependency chains
Overscheduled/bottlenecking units



Simplified overview of CPU architecture

The main stages of a modern CPU:

1 Decoder
2 Branch prediction
3 Scheduler
4 Multiple units executing instructions

This enables:

Scheduling instructions before branch is evaluated
Out-of-order execution
Concurrent execution of multiple instructions

Things to be aware of:

Dependency chains
Overscheduled/bottlenecking units



Simplified overview of CPU architecture

The main stages of a modern CPU:

1 Decoder
2 Branch prediction
3 Scheduler
4 Multiple units executing instructions

This enables:

Scheduling instructions before branch is evaluated
Out-of-order execution
Concurrent execution of multiple instructions

Things to be aware of:

Dependency chains
Overscheduled/bottlenecking units



GMP versus MPFR versus FLINT

GMP’s multiplication is loop-based, has handoptimized assembly
code native to CPU, but lacks high multiplication.

MPFR uses GMP as backend. It has sloppy approximate but not
precise approximate.

FLINT low-level routines are mostly fully unrolled routines,
implements both full multiplication and precise approximate.



Funny headline



Results, full multiplication

1 3 5 7 9 11 13 15
0

100

200

300

400

Number of words, n

Cl
oc

k
cy

cle
s

GMP, x86 (Zen 3)
FLINT, x86 (Zen 3)

GMP, ARM (Apple M1)
FLINT, ARM (Apple M1)



Results, full multiplication

1 2 3 4 5
0

20

40

60

Number of words, n

Cl
oc

k
cy

cle
s

GMP, x86 (Zen 3)
FLINT, x86 (Zen 3)

GMP, ARM (Apple M1)
FLINT, ARM (Apple M1)



Results, full multiplication

1 3 5 7 9 11 13 15
1
2
3
4
5
6
7
8
9

Number of words, n

Cl
oc

k
cy

cle
s/

n2
GMP, x86 (Zen 3)

FLINT, x86 (Zen 3)
GMP, ARM (Apple M1)

FLINT, ARM (Apple M1)



Results, high multiplication on Zen 3

0 5 10 15 20

0

200

400

600

Number of words, n

Cl
oc

k
cy

cle
s

MPFR, INT
FLINT, INT
MPFR, FP
FLINT, FP



Results, high multiplication on Zen 3

2 4 6 8
0

50

100

150

200

Number of words, n

Cl
oc

k
cy

cle
s

MPFR, INT
FLINT, INT
MPFR, FP
FLINT, FP



Results, high multiplication on Zen 3

16 20 32 40 64

0.8

1

1.2

1.4

1.6

1.8

2

Number of words, n

Cl
oc

k
cy

cle
s/

n2
MPFR, INT
FLINT, INT
MPFR, FP
FLINT, FP



Results, high multiplication on Zen 3

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

Number of words, n

Cl
oc

k
cy

cle
s/

n2

MPFR, INT
FLINT, INT
MPFR, FP
FLINT, FP



Conclusions and thoughts

Apple’s ARM can actually perform multiple carry chains in
parallel due to its scheduler

Straight line programs (SLPs) are important to reduce
penalties when going from native data types to multiple
precision arithmetic
Handwritten/“handgenerated” assembly remain important for
multiple precision arithmetic due to poor compiler support



Conclusions and thoughts

Apple’s ARM can actually perform multiple carry chains in
parallel due to its scheduler
Straight line programs (SLPs) are important to reduce
penalties when going from native data types to multiple
precision arithmetic

Handwritten/“handgenerated” assembly remain important for
multiple precision arithmetic due to poor compiler support



Conclusions and thoughts

Apple’s ARM can actually perform multiple carry chains in
parallel due to its scheduler
Straight line programs (SLPs) are important to reduce
penalties when going from native data types to multiple
precision arithmetic
Handwritten/“handgenerated” assembly remain important for
multiple precision arithmetic due to poor compiler support


	Title page
	Table of contents
	Basic multiple-precision arithmetic operations
	Hardware overview and implementation
	Results

