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Basic multiple-precision arithmetic operations

n-1
Let integers be on the form a = Z aip' where 0 < a; < .
i=0

Fundamentals are these naive/schoolbook @(n) operations:

m Left and right shift: r—la-2¢|
m Addition and subtraction: r—a+b
m nx l-multiplication: r—a-bg (mul_1)

m Addition of nx 1-multiplication: r—r+a-by (addmul_1)



Basecase multiplication

Full multiplication
n-1 .
r—ab=)> abp
i=0

can be carried out via

r— a-bg // mul 1
fori—1ton-1do

ro— r+(a-b,~)-ﬁi // addmul_1
end

where multiplication with B is trivial.
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Visualizing 6 x 6 multiplication

ap a1 a» a3 aa as

b1 r<—a-b0

for i—1ton-1do
Zi_ r—r+(a-b)-p (i=3)
by end
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Visualizing 6 x 6 multiplication

ap a1 a» a3 aa as
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Visualizing 6 x 6 multiplication

ap a1 a» a3 aa as

b1 r<—a-b0

for i—1ton-1do
Zi r—r+(a-b;)-p (i=5)
by end



High multiplication

High multiplication is a multiplication where we scrap the lower
part of the result, e.g. floating point arithmetic.

Typically, we want to compute the highest n words of an nx n
product, where the full product would be contained in 2n words.

Sloppy approximate Precise approximate

— high multiplication between two words v and v: |uv/f]



High multiplication

m Sloppy approximate yields an error of at most (n—1)8"

m Precise approximate yields an error of at most (2n—3)g" "1

Precise approximate contains only n—1 extra word-by-word high
multiplications compared to sloppy approximate, but has far better

precision!

With precise approximate we can check if the upper n words are
guaranteed to be correctly rounded.



Instructions for mul 1

a |a1|a|a|as|as| X |bg

= Low multiplications

+ High multiplications

= n rn rn r3 ra s e

We need low multiplication, high multiplication and addition with
carry.



Instructions for addmul 1

n|ln || |mnK|nK |k

+ |a|a1|a|a|as|as| X | b

= rnp|ni|rn|r3|r|rmkK|rls

+ Low multiplications

+ High multiplications

We need low multiplication, high multiplication and addition with
carry (preferably with two separate carry flags).



Instructions for addmul 1

n|ln || |mnK|nK |k

+ |a|a1|a|a|as|as| X | b

= rnp|ni|rn|r3|r|rmkK|rls

+ Low multiplications

+ High multiplications

We need low multiplication, high multiplication and addition with
carry (preferably with two separate carry flags).

Two separate carry flags = lower bound of 1 cycle/n?

One carry flag = lower bound of 2 cycles/n?



Architecture specifics

x86
m Two separate carry flags

m Has word-word full multiplication in one instruction

ARM
m One single carry flag

m Low multiplication and high multiplication are different
instructions

= ARM can only do one out of two carry chains in addmul_1 at a
time, while x86 do both at a time?
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Simplified overview of CPU architecture

The main stages of a modern CPU:
Decoder
Branch prediction
Scheduler
Multiple units executing instructions
This enables:
m Scheduling instructions before branch is evaluated
m Out-of-order execution
m Concurrent execution of multiple instructions
Things to be aware of:

m Dependency chains

m Overscheduled/bottlenecking units



GMP versus MPFR versus FLINT

GMP’s multiplication is loop-based, has handoptimized assembly
code native to CPU, but lacks high multiplication.

MPFR uses GMP as backend. It has sloppy approximate but not
precise approximate.

FLINT low-level routines are mostly fully unrolled routines,
implements both full multiplication and precise approximate.



Funny headline

Q gmp

Search | Stories v | by | Popularity v for All time v

Optimization story: Switching from GMP to gcc's __int128 reduced run time by 95%
129 points | nanis | 9 years ago | 31 comments
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Results, full multiplication
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Results, high multiplication on Zen 3
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Results, high multiplication on Zen 3
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Results, high multiplication on Zen 3
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Results, high multiplication on Zen 3
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m Apple's ARM can actually perform multiple carry chains in
parallel due to its scheduler
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Conclusions and thoughts

m Apple's ARM can actually perform multiple carry chains in
parallel due to its scheduler

m Straight line programs (SLPs) are important to reduce
penalties when going from native data types to multiple
precision arithmetic

m Handwritten/"handgenerated” assembly remain important for
multiple precision arithmetic due to poor compiler support
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