Fast basecases for arbitrary-size multiplication

Albin Ahlbick! Fredrik Johansson?

LLIX, CNRS, Ecole polytechnique

2Inria Bordeaux

31 January 2025

Basic multiple-precision arithmetic operations
Hardware overview and implementation

Results

Basic multiple-precision arithmetic operations

n-1
Let integers be on the form a = Z aip' where 0 < a; < .
i=0

Fundamentals are these naive/schoolbook @(n) operations:

m Left and right shift: r—la-2¢|
m Addition and subtraction: r—a+b
m nx l-multiplication: r—a-bg (mul_1)

m Addition of nx 1-multiplication: r—r+a-by (addmul_1)

Basecase multiplication

Full multiplication
n-1 .
r—ab=)> abp
i=0

can be carried out via

r— a-bg // mul 1
fori—1ton-1do

ro— r+(a-b,~)-ﬁi // addmul_1
end

where multiplication with B is trivial.

Visualizing 6 x 6 multiplication

ap a1 a» a3 aa as

]

by fori—1ton-1do
by i
by r—r+(a-bj)-p
by end

Visualizing 6 x 6 multiplication

ap a1 a» a3 aa as

ST Y
1 for i—1ton-1do

ro— r+(a-b,~)-ﬁi (i=1)
by end

Visualizing 6 x 6 multiplication

ap a1 a» a3 aa as

b1 r<—a-b0
for i—1ton-1do
- I T
by end
bs

Visualizing 6 x 6 multiplication

ap a1 a» a3 aa as

b1 r<—a-b0

for i—1ton-1do
Zi_ r—r+(a-b)-p (i=3)
by end
bs

Visualizing 6 x 6 multiplication

ap a1 a» a3 aa as

b r<—a-b0
b; fori—1ton-1do
by r—r+(a-bj)-p (i=4)

by end
bs

Visualizing 6 x 6 multiplication

ap a1 a» a3 aa as

b1 r<—a-b0

for i—1ton-1do
Zi r—r+(a-b;)-p (i=5)
by end

High multiplication

High multiplication is a multiplication where we scrap the lower
part of the result, e.g. floating point arithmetic.

Typically, we want to compute the highest n words of an nx n
product, where the full product would be contained in 2n words.

Sloppy approximate Precise approximate

— high multiplication between two words v and v: |uv/f]

High multiplication

m Sloppy approximate yields an error of at most (n—1)8"

m Precise approximate yields an error of at most (2n—3)g" "1

Precise approximate contains only n—1 extra word-by-word high
multiplications compared to sloppy approximate, but has far better

precision!

With precise approximate we can check if the upper n words are
guaranteed to be correctly rounded.

Instructions for mul 1

a |a1|a|a|as|as| X |bg

= Low multiplications

+ High multiplications

= n rn rn r3 ra s e

We need low multiplication, high multiplication and addition with
carry.

Instructions for addmul 1

n|ln || |mnK|nK |k

+ |a|a1|a|a|as|as| X | b

= rnp|ni|rn|r3|r|rmkK|rls

+ Low multiplications

+ High multiplications

We need low multiplication, high multiplication and addition with
carry (preferably with two separate carry flags).

Instructions for addmul 1

n|ln || |mnK|nK |k

+ |a|a1|a|a|as|as| X | b

= rnp|ni|rn|r3|r|rmkK|rls

+ Low multiplications

+ High multiplications

We need low multiplication, high multiplication and addition with
carry (preferably with two separate carry flags).

Two separate carry flags = lower bound of 1 cycle/n?

One carry flag = lower bound of 2 cycles/n?

Architecture specifics

x86
m Two separate carry flags

m Has word-word full multiplication in one instruction

ARM
m One single carry flag

m Low multiplication and high multiplication are different
instructions

= ARM can only do one out of two carry chains in addmul_1 at a
time, while x86 do both at a time?

Simplified overview of CPU architecture

The main stages of a modern CPU:
Decoder
Branch prediction
Scheduler

Multiple units executing instructions

Simplified overview of CPU architecture

The main stages of a modern CPU:
Decoder
Branch prediction
Scheduler
Multiple units executing instructions
This enables:
m Scheduling instructions before branch is evaluated
m Out-of-order execution

m Concurrent execution of multiple instructions

Simplified overview of CPU architecture

The main stages of a modern CPU:
Decoder
Branch prediction
Scheduler
Multiple units executing instructions
This enables:
m Scheduling instructions before branch is evaluated
m Out-of-order execution
m Concurrent execution of multiple instructions
Things to be aware of:

m Dependency chains

m Overscheduled/bottlenecking units

GMP versus MPFR versus FLINT

GMP’s multiplication is loop-based, has handoptimized assembly
code native to CPU, but lacks high multiplication.

MPFR uses GMP as backend. It has sloppy approximate but not
precise approximate.

FLINT low-level routines are mostly fully unrolled routines,
implements both full multiplication and precise approximate.

Funny headline

Q gmp

Search | Stories v | by | Popularity v for All time v

Optimization story: Switching from GMP to gcc's __int128 reduced run time by 95%
129 points | nanis | 9 years ago | 31 comments

Results, full multiplication

400|—* GMP, x86 (Zen 3) il
—m— FLINT, x86 (Zen 3)

—e— GMP, ARM (Apple M1)
—«—FLINT, ARM (Apple M1) .

300

200 | N

Clock cycles

100 N

0L I I I | I
1 3 5 7 9 11 13 15

Number of words, n

Results, full multiplication

—o— GMP, x86 (Zen 3)
—=— FLINT, x86 (Zen 3)
60| e GMP, ARM (Apple M1) a
——FLINT, ARM (Apple M1)

N
o
T

Clock cycles

N
o
I

1 2 3 4 5
Number of words, n

Results, full multiplication

—— GMP, x86 (Zen 3)
—=— FLINT, x86 (Zen 3)
—e— GMP, ARM (Apple M1)
——FLINT, ARM (Apple M1)

Clock cycles/n?
= N W P 01O N 00 ©
T

1 3 5 7 9 11 13 15
Number of words, n

Results, high multiplication on Zen 3

Clock cycles

600

400

200

—e— MPFR, INT
—=—FLINT, INT
—e— MPFR, FP
—— FLINT, FP

1 1 1

5 10 15
Number of words, n

20

Results, high multiplication on Zen 3

200 —o— MPFR, INT
—=— FLINT, INT
—e— MPFR, FP

100 |

Clock cycles

50 |-

0t | I I
2 4 6 8

Number of words, n

Results, high multiplication on Zen 3

2\ —e— MPFR, INT
—m FLINT, INT
1.8} —e— MPFR, FP
el —— FLINT, FP
~~
3
O 14 .
(@]
X
8 12}
(@]
1 [|
0.8
| | | | |
16 20 32 40 64

Number of words, n

Results, high multiplication on Zen 3

—eo— MPFR, INT
6 —m— FLINT, INT
—e— MPFR, FP
o 5| —— FLINT, FP
N
(%)
<@
9 4l
(6
S
3 3|
O
2 [
1 [
| | | | | | | | |

|
1 2 3 4 5 6 7 8 9 10
Number of words, n

Conclusions and thoughts

m Apple's ARM can actually perform multiple carry chains in
parallel due to its scheduler

Conclusions and thoughts

m Apple's ARM can actually perform multiple carry chains in
parallel due to its scheduler

m Straight line programs (SLPs) are important to reduce
penalties when going from native data types to multiple
precision arithmetic

Conclusions and thoughts

m Apple's ARM can actually perform multiple carry chains in
parallel due to its scheduler

m Straight line programs (SLPs) are important to reduce
penalties when going from native data types to multiple
precision arithmetic

m Handwritten/"handgenerated” assembly remain important for
multiple precision arithmetic due to poor compiler support

	Title page
	Table of contents
	Basic multiple-precision arithmetic operations
	Hardware overview and implementation
	Results

