Fast basecases for arbitrary-size multiplication

Albin Ahlbäck¹ Fredrik Johansson²

¹LIX, CNRS, École polytechnique

²Inria Bordeaux

31 January 2025

1 Basic multiple-precision arithmetic operations

2 Hardware overview and implementation

Let integers be on the form
$$a = \sum_{i=0}^{n-1} a_i \beta^i$$
 where $0 \le a_i < \beta$.

Fundamentals are these naïve/schoolbook $\mathcal{O}(n)$ operations:

Left and right shift: r ← [a ⋅ 2^e]
Addition and subtraction: r ← a ± b
n × 1-multiplication: r ← a ⋅ b₀ (mul_1)
Addition of n × 1-multiplication: r ← r + a ⋅ b₀ (addmul_1)

Full multiplication

$$r \leftarrow a \cdot b = \sum_{i=0}^{n-1} a \cdot b_i \beta^i$$

can be carried out via

 $r \leftarrow a \cdot b_0 \qquad // \text{ mul_1}$ for $i \leftarrow 1$ to n-1 do $r \leftarrow r + (a \cdot b_i) \cdot \beta^i \qquad // \text{ addmul_1}$ end

where multiplication with β^i is trivial.

$$r \leftarrow a \cdot b_0$$

for $i \leftarrow 1$ to $n-1$ do
 $r \leftarrow r + (a \cdot b_i) \cdot \beta^i$
end

$$r \leftarrow a \cdot b_0$$

for $i \leftarrow 1$ to $n-1$ do
 $r \leftarrow r + (a \cdot b_i) \cdot \beta^i$ $(i = 1)$
end

$$r \leftarrow a \cdot b_0$$

for $i \leftarrow 1$ to $n-1$ do
 $r \leftarrow r + (a \cdot b_i) \cdot \beta^i$ ($i = 2$)
end

$$r \leftarrow a \cdot b_0$$

for $i \leftarrow 1$ to $n-1$ do
 $r \leftarrow r + (a \cdot b_i) \cdot \beta^i$ ($i = 3$)
end

$$r \leftarrow a \cdot b_0$$

for $i \leftarrow 1$ to $n-1$ do
 $r \leftarrow r + (a \cdot b_i) \cdot \beta^i$ ($i = 4$)
end

$$r \leftarrow a \cdot b_0$$

for $i \leftarrow 1$ to $n-1$ do
 $r \leftarrow r + (a \cdot b_i) \cdot \beta^i$ ($i = 5$)
end

High multiplication is a multiplication where we scrap the lower part of the result, e.g. floating point arithmetic.

Typically, we want to compute the highest *n* words of an $n \times n$ product, where the full product would be contained in 2n words.

 \bigotimes – high multiplication between two words *u* and *v*: $\lfloor uv/\beta \rfloor$

- Sloppy approximate yields an error of at most $(n-1)\beta^n$
- Precise approximate yields an error of at most $(2n-3)\beta^{n-1}$

Precise approximate contains only n-1 extra word-by-word high multiplications compared to sloppy approximate, but has far better precision!

With precise approximate we can check if the upper n words are guaranteed to be correctly rounded.

Instructions for mul_1

We need *low multiplication*, *high multiplication* and *addition with carry*.

Instructions for addmul_1

We need *low multiplication*, *high multiplication* and *addition with carry* (preferably with two separate carry flags).

Instructions for addmul_1

We need *low multiplication*, *high multiplication* and *addition with carry* (preferably with two separate carry flags).

Two separate carry flags \Rightarrow lower bound of 1 cycle/n?

One carry flag \Rightarrow lower bound of 2 cycles/*n*?

x86

- Two separate carry flags
- Has word-word full multiplication in one instruction

ARM

- One single carry flag
- Low multiplication and high multiplication are different instructions

 \Rightarrow ARM can only do one out of two carry chains in addmul_1 at a time, while x86 do both at a time?

Simplified overview of CPU architecture

The main stages of a modern CPU:

- 1 Decoder
- 2 Branch prediction
- 3 Scheduler
- 4 Multiple units executing instructions

Simplified overview of CPU architecture

The main stages of a modern CPU:

- 1 Decoder
- 2 Branch prediction
- 3 Scheduler
- 4 Multiple units executing instructions

This enables:

- Scheduling instructions before branch is evaluated
- Out-of-order execution
- Concurrent execution of multiple instructions

Simplified overview of CPU architecture

The main stages of a modern CPU:

- 1 Decoder
- 2 Branch prediction
- 3 Scheduler
- 4 Multiple units executing instructions

This enables:

- Scheduling instructions before branch is evaluated
- Out-of-order execution
- Concurrent execution of multiple instructions

Things to be aware of:

- Dependency chains
- Overscheduled/bottlenecking units

GMP's multiplication is loop-based, has handoptimized assembly code native to CPU, but lacks high multiplication.

MPFR uses GMP as backend. It has sloppy approximate but not precise approximate.

FLINT low-level routines are mostly fully unrolled routines, implements both full multiplication and precise approximate.

Results, full multiplication

Results, full multiplication

Results, full multiplication

 Apple's ARM can actually perform multiple carry chains in parallel due to its scheduler

- Apple's ARM can actually perform multiple carry chains in parallel due to its scheduler
- Straight line programs (SLPs) are important to reduce penalties when going from native data types to multiple precision arithmetic

- Apple's ARM can actually perform multiple carry chains in parallel due to its scheduler
- Straight line programs (SLPs) are important to reduce penalties when going from native data types to multiple precision arithmetic
- Handwritten/"handgenerated" assembly remain important for multiple precision arithmetic due to poor compiler support