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Basic multiple-precision arithmetic operations

Let integers be on the form a =
n−1∑
i=0

aiβ
i where 0≤ ai <β.

Fundamentals are these naïve/schoolbook O(n) operations:

Left and right shift: r ←⌊a ·2e⌋
Addition and subtraction: r ← a±b
n×1-multiplication: r ← a ·b0 (mul_1)
Addition of n×1-multiplication: r ← r +a ·b0 (addmul_1)



Basecase multiplication

Full multiplication

r ← a ·b =
n−1∑
i=0

a ·biβ
i

can be carried out via

r ← a ·b0 // mul_1
for i ← 1 to n−1 do

r ← r + (a ·bi) ·βi // addmul_1
end

where multiplication with βi is trivial.
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High multiplication

High multiplication is a multiplication where we scrap the lower
part of the result, e.g. floating point arithmetic.

Typically, we want to compute the highest n words of an n×n
product, where the full product would be contained in 2n words.

Magnitude

Naïve Sloppy approximate Precise approximate

– high multiplication between two words u and v : ⌊uv/β⌋



High multiplication

Sloppy approximate yields an error of at most (n−1)βn

Precise approximate yields an error of at most (2n−3)βn−1

Precise approximate contains only n−1 extra word-by-word high
multiplications compared to sloppy approximate, but has far better
precision!

With precise approximate we can check if the upper n words are
guaranteed to be correctly rounded.



Instructions for mul_1

a0 a1 a2 a3 a4 a5 × b0

= Low multiplications

+ High multiplications

= r0 r1 r2 r3 r4 r5 r6

We need low multiplication, high multiplication and addition with
carry.
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Architecture specifics

x86

Two separate carry flags
Has word-word full multiplication in one instruction

ARM

One single carry flag
Low multiplication and high multiplication are different
instructions

⇒ ARM can only do one out of two carry chains in addmul_1 at a
time, while x86 do both at a time?



Simplified overview of CPU architecture

The main stages of a modern CPU:

1 Decoder
2 Branch prediction
3 Scheduler
4 Multiple units executing instructions

This enables:

Scheduling instructions before branch is evaluated
Out-of-order execution
Concurrent execution of multiple instructions

Things to be aware of:

Dependency chains
Overscheduled/bottlenecking units
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GMP versus MPFR versus FLINT

GMP’s multiplication is loop-based, has handoptimized assembly
code native to CPU, but lacks high multiplication.

MPFR uses GMP as backend. It has sloppy approximate but not
precise approximate.

FLINT low-level routines are mostly fully unrolled routines,
implements both full multiplication and precise approximate.



Funny headline



Results, full multiplication
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Results, high multiplication on Zen 3
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Results, high multiplication on Zen 3
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Results, high multiplication on Zen 3
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Results, high multiplication on Zen 3
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Conclusions and thoughts

Apple’s ARM can actually perform multiple carry chains in
parallel due to its scheduler

Straight line programs (SLPs) are important to reduce
penalties when going from native data types to multiple
precision arithmetic
Handwritten/“handgenerated” assembly remain important for
multiple precision arithmetic due to poor compiler support
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